Skip to main content

Gleitende Durchschnittliche Modellidentifikation


Der erste Schritt bei der Entwicklung eines Box-Jenkins-Modells besteht darin, festzustellen, ob die Serie stationär ist und ob es eine signifikante Saisonalität gibt, die modelliert werden muss. Stationarität kann anhand eines Ablaufablaufplots beurteilt werden. Das Ablaufdiagramm sollte eine konstante Position und Skalierung aufweisen. Es kann auch aus einem Autokorrelationsdiagramm nachgewiesen werden. Insbesondere wird die Nichtstationarität oft durch eine Autokorrelationsdiagramm mit sehr langsamem Abfall angezeigt. Differenzierung zur Stationarität Box und Jenkins empfehlen den differenzierenden Ansatz, um Stationarität zu erreichen. Jedoch kann auch das Anpassen einer Kurve und das Subtrahieren der angepassten Werte aus den ursprünglichen Daten auch im Zusammenhang mit Box-Jenkins-Modellen verwendet werden. Bei der Modellidentifizierungsphase ist es unser Ziel, jahreszeitliche Erkennung, falls vorhanden, zu erkennen und den Auftrag für die saisonalen autoregressiven und saisonal gleitenden Durchschnittsbedingungen zu ermitteln. Für viele Serien ist die Periode bekannt und ein einzelner Saisonalitätsausdruck ist ausreichend. Zum Beispiel für monatliche Daten würden wir typischerweise entweder eine saisonale AR 12 Begriff oder eine saisonale MA 12 Begriff. Bei Box-Jenkins-Modellen wird das Modell vor der Montage nicht explizit entfernt. Stattdessen beinhalten wir die Reihenfolge der Saisonbegriffe in der Modellspezifikation zur ARIMA-Schätzsoftware. Es kann jedoch hilfreich sein, einen saisonalen Unterschied zu den Daten anzuwenden und die Autokorrelation und die partiellen Autokorrelationsdiagramme zu regenerieren. Dies kann bei der Modellidentifizierung der nicht-saisonalen Komponente des Modells helfen. In einigen Fällen kann die saisonale Differenzierung die meisten oder alle der Saisonalität Wirkung zu entfernen. Identifizieren Sie p und q Sobald die Stationarität und die Saisonalität adressiert worden sind, besteht der nächste Schritt darin, die Reihenfolge (d. h. (p) und (q)) der autoregressiven und gleitenden Durchschnittsterme zu identifizieren. Autokorrelation und partielle Autokorrelationsdiagramme Die primären Werkzeuge dafür sind das Autokorrelationsdiagramm und das partielle Autokorrelationsdiagramm. Die Stichproben-Autokorrelationsdiagramm und die Stichproben-Autokorrelationsdiagramm werden mit dem theoretischen Verhalten dieser Diagramme verglichen, wenn die Reihenfolge bekannt ist. Reihenfolge des Autoregressiven Prozesses ((p)) Speziell für ein AR (1) - Verfahren sollte die Autokorrelationsfunktion der Probe eine exponentiell abnehmende Erscheinung aufweisen. AR-Prozesse höherer Ordnung sind jedoch oft ein Gemisch aus exponentiell abnehmenden und gedämpften sinusförmigen Komponenten. Für autoregressive Prozesse höherer Ordnung muss die Stichprobenautokorrelation mit einem partiellen Autokorrelationsdiagramm ergänzt werden. Die partielle Autokorrelation eines AR ((p)) - Prozesses wird bei Verzögerung (p & sub1;) und grßer, so dass wir die partielle Autokorrelationsfunktion untersuchen, um festzustellen, ob es einen Beweis für eine Abweichung von Null gibt. Dies wird in der Regel durch das Platzieren eines 95-Konfidenzintervalls auf das partielle Autokorrelationsdiagramm der Probe bestimmt (die meisten Softwareprogramme, die Beispiel-Autokorrelationsdiagramme erzeugen, werden ebenfalls dieses Konfidenzintervall aufzeichnen). Wenn das Softwareprogramm nicht das Vertrauensband erzeugt, ist es ungefähr (pm 2sqrt), wobei (N) die Stichprobengröße bezeichnet. Ordnung des gleitenden Durchschnittsprozesses ((q)) Die Autokorrelationsfunktion eines MA ((q)) Prozesses wird bei der Verzögerung (q & sub1;) und größer größer, so daß wir die Autokorrelationsfunktion der Probe untersuchen, um zu sehen, wo sie im wesentlichen Null wird. Wir tun dies, indem wir das 95-Konfidenzintervall für die Stichproben-Autokorrelationsfunktion auf dem Stichproben-Autokorrelationsdiagramm platzieren. Die meisten Software, die das Autokorrelationsdiagramm erzeugen kann, kann auch dieses Konfidenzintervall erzeugen. Die partielle Autokorrelationsfunktion ist im Allgemeinen nicht hilfreich, um die Reihenfolge des gleitenden Durchschnittsprozesses zu bestimmen. Form der Autokorrelationsfunktion Die folgende Tabelle fasst zusammen, wie die Autokorrelationsfunktion für die Modellidentifikation verwendet wird. Zweck: Überprüfung der Zufallszahlen Autokorrelationsdiagramme (Box und Jenkins, S. 28-32) sind ein gängiges Werkzeug zur Überprüfung der Zufälligkeit in einem Datensatz. Diese Zufälligkeit wird durch Berechnen von Autokorrelationen für Datenwerte bei variierenden Zeitverzögerungen ermittelt. Wenn sie zufällig sind, sollten solche Autokorrelationen nahezu null für irgendwelche und alle zeitlichen Verzögerungen sein. Wenn nicht-zufällig, dann werden eine oder mehrere der Autokorrelationen signifikant ungleich Null sein. Darüber hinaus werden Autokorrelationsdiagramme in der Modellidentifikationsstufe für autoregressive, gleitende mittlere Zeitreihenmodelle von Box-Jenkins verwendet. Autokorrelation ist nur ein Maß der Zufälligkeit Beachten Sie, dass unkorreliert nicht unbedingt zufällig bedeutet. Daten mit signifikanter Autokorrelation sind nicht zufällig. Daten, die keine signifikante Autokorrelation aufweisen, können jedoch auf andere Weise noch nicht-zufällig auftreten. Autokorrelation ist nur ein Maß der Zufälligkeit. Im Rahmen der Modellvalidierung (die der primäre Typ der Zufälligkeit ist, die wir im Handbuch behandeln) ist die Überprüfung auf Autokorrelation typischerweise ein ausreichender Test der Zufälligkeit, da die Residuen von schlechten Anpassungsmodellen dazu tendieren, nicht-subtile Zufälligkeit zu zeigen. Einige Anwendungen erfordern jedoch eine strengere Bestimmung der Zufälligkeit. In diesen Fällen wird eine Batterie von Tests, die eine Überprüfung auf Autokorrelation einschließen kann, angewandt, da Daten in vielen verschiedenen und oft subtilen Arten nicht-zufällig sein können. Ein Beispiel dafür, wo eine strengere Überprüfung der Zufälligkeit erforderlich ist, wäre das Testen von Zufallszahlengeneratoren. Beispiel-Diagramm: Autokorrelationen sollten nahe-Null für die Zufälligkeit sein. Dies ist bei diesem Beispiel nicht der Fall, so dass die Zufallsannahme fehlschlägt. Dieses Beispiel-Autokorrelationsdiagramm zeigt, dass die Zeitreihe nicht zufällig ist, sondern vielmehr einen hohen Grad an Autokorrelation zwischen benachbarten und nahe benachbarten Beobachtungen aufweist. Definition: r (h) versus h Autokorrelationsdiagramme werden durch vertikale Achse gebildet: Autokorrelationskoeffizient, wobei C h die Autokovarianzfunktion ist und C 0 die Varianzfunktion ist. Beachten Sie, dass R h zwischen -1 und 1 liegt Folgende Formel für die Autokovarianz-Funktion Obwohl diese Definition weniger Bias aufweist, weist die (1 N) - Formulierung einige wünschenswerte statistische Eigenschaften auf und ist die am häufigsten in der Statistikliteratur verwendete Form. Siehe Seiten 20 und 49-50 in Chatfield für Details. Horizontale Achse: Zeitverzögerung h (h 1, 2, 3.) Die obige Zeile enthält auch mehrere horizontale Bezugslinien. Die Mittellinie ist auf Null. Die anderen vier Zeilen sind 95 und 99 Konfidenzbänder. Beachten Sie, dass es zwei verschiedene Formeln für die Erzeugung der Vertrauensbänder gibt. Wenn das Autokorrelationsdiagramm verwendet wird, um auf Zufälligkeit zu testen (dh es gibt keine Zeitabhängigkeit in den Daten), wird die folgende Formel empfohlen: wobei N die Stichprobengröße ist, z die kumulative Verteilungsfunktion der Standardnormalverteilung und (alpha ) Ist das Signifikanzniveau. In diesem Fall haben die Vertrauensbänder eine feste Breite, die von der Probengröße abhängt. Dies ist die Formel, die verwendet wurde, um die Vertrauensbänder im obigen Diagramm zu erzeugen. Autokorrelationsdiagramme werden auch in der Modellidentifikationsstufe für die Montage von ARIMA-Modellen verwendet. In diesem Fall wird für die Daten ein gleitendes Durchschnittsmodell angenommen und die folgenden Konfidenzbänder erzeugt: wobei k die Verzögerung, N die Stichprobengröße, z die kumulative Verteilungsfunktion der Standardnormalverteilung und (alpha) ist Das Signifikanzniveau. In diesem Fall nehmen die Vertrauensbänder zu, wenn die Verzögerung zunimmt. Das Autokorrelationsdiagramm kann Antworten auf die folgenden Fragen liefern: Sind die Daten zufällig Ist eine Beobachtung, die mit einer angrenzenden Beobachtung in Beziehung steht, ist eine Beobachtung, die mit einer zweimal entfernten Beobachtung zusammenhängt (usw.) Ist die beobachtete Zeitreihe weißes Rauschen Ist die beobachtete Zeitreihe sinusförmig Ist die beobachtete Zeitreihe autoregressiv Was ist ein geeignetes Modell für die beobachtete Zeitreihe Ist das Modell gültig und ausreichend Ist die Formel s ssqrt gültig Wichtigkeit: Sicherstellung der Gültigkeit von technischen Schlussfolgerungen Zufall (zusammen mit festem Modell, fester Variation und fester Verteilung) ist Eine der vier Annahmen, die typischerweise allen Messprozessen zugrunde liegen. Die Zufallsannahme ist aus den folgenden drei Gründen von entscheidender Bedeutung: Die meisten standardmäßigen statistischen Tests hängen von der Zufälligkeit ab. Die Gültigkeit der Testresultate steht in direktem Zusammenhang mit der Gültigkeit der Zufallsannahme. Viele häufig verwendete statistische Formeln hängen von der Zufallsannahme ab, wobei die häufigste Formel die Formel zur Bestimmung der Standardabweichung des Stichprobenmittels ist: wobei s die Standardabweichung der Daten ist. Obwohl stark verwendet, sind die Ergebnisse aus der Verwendung dieser Formel ohne Wert, es sei denn, die Zufälligkeitsannahme gilt. Für univariate Daten ist das Standardmodell Wenn die Daten nicht zufällig sind, ist dieses Modell falsch und ungültig, und die Schätzungen für die Parameter (wie die Konstante) werden unsinnig und ungültig. Kurz, wenn der Analytiker nicht auf Zufälligkeit prüft, dann wird die Gültigkeit vieler statistischer Schlüsse verdächtig. Das Autokorrelationsdiagramm ist eine hervorragende Möglichkeit, auf eine solche Zufälligkeit zu überprüfen.8.4 Durchschnittliche Modelle verschieben Anstatt frühere Werte der Prognosedatei in einer Regression zu verwenden, verwendet ein gleitendes Durchschnittsmodell vergangene Prognosefehler in einem regressionsähnlichen Modell. Y c et the theta e dots theta e, wobei et weißes Rauschen ist. Wir bezeichnen dies als MA (q) - Modell. Natürlich beobachten wir nicht die Werte von et, also ist es nicht wirklich Regression im üblichen Sinne. Man beachte, daß jeder Wert von yt als gewichteter gleitender Durchschnitt der letzten Prognosefehler betrachtet werden kann. Jedoch sollten gleitende Durchschnittsmodelle nicht mit der gleitenden glatten Glättung verwechselt werden, die wir in Kapitel 6 besprochen haben. Ein gleitendes Durchschnittsmodell wird für die Prognose zukünftiger Werte verwendet, während die gleitende gleitende Durchschnittskurve für die Abschätzung des Trendzyklus der vergangenen Werte verwendet wird. Abbildung 8.6: Zwei Beispiele für Daten aus gleitenden Durchschnittsmodellen mit unterschiedlichen Parametern. Links: MA (1) mit yt 20e t 0,8e t-1. Rechts: MA (2) mit y t e t - e t-1 0,8e t-2. In beiden Fällen ist e t normal verteiltes Weißrauschen mit Mittelwert Null und Varianz Eins. Abbildung 8.6 zeigt einige Daten aus einem MA (1) - Modell und einem MA (2) - Modell. Das Ändern der Parameter theta1, dots, thetaq führt zu unterschiedlichen Zeitreihenmustern. Wie bei autoregressiven Modellen wird die Varianz des Fehlerterms et nur den Maßstab der Reihe ändern, nicht die Muster. Es ist möglich, jedes stationäre AR (p) - Modell als MA (infty) - Modell zu schreiben. Beispielsweise können wir dies bei einem AR (1) - Modell demonstrieren: begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et amp phi13y phi12e phi1 e et amptext ende Provided -1 lt phi1 lt 1 wird der Wert von phi1k kleiner, wenn k größer wird. So erhalten wir schließlich yt und phi1 e phi12 e phi13 e cdots, ein MA (infty) Prozess. Das umgekehrte Ergebnis gilt, wenn wir den MA-Parametern einige Einschränkungen auferlegen. Dann wird das MA-Modell invertierbar. Das heißt, dass wir alle invertierbaren MA (q) Prozess als AR (infty) Prozess schreiben können. Invertible Modelle sind nicht einfach, damit wir von MA-Modellen auf AR-Modelle umwandeln können. Sie haben auch einige mathematische Eigenschaften, die sie in der Praxis einfacher zu verwenden. Die Invertibilitätsbedingungen sind den stationären Einschränkungen ähnlich. Für ein MA (1) Modell: -1lttheta1lt1. Für ein MA (2) - Modell: -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. Kompliziertere Bedingungen gelten für qge3. Wiederum wird R diese Einschränkungen bei der Schätzung der Modelle berücksichtigen.

Comments